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Aims

● To describe how one might connect physics codes to the
Grand Challenge machinery today

● To provide a foundation for collectively exploring how to
accomplish such integration in Mock Data Challenge I and
beyond

● To avoid detailed discussions in this forum of what the GCA
architecture does, and how it works
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Physics Analysis with the GCA Architecture

If you can navigate the STAR persistent event data model:

1.  Write a routine to do analysis on a single event; signature is

void usercode(d_Ref_Any& current);
2.  Link with a precompiled driver

3.  Invoke the executable with an optional query string on the command
line
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Example

1.  Build:
CC -c Usercode.C

CC -o myAnalysis Usercode.o … (GCA libraries go here)

or
make myAnalysis

in the directory

/home/common/GC/malon/BuildYourOwnGCAQuery

2.  Run:
myAnalysis -query “1970<num_Pion_p<1990”

This pumps events that satisfy the query one at a time through the user’s
usercode() routine.

The user does not need to know anything about the GCA architecture or
CORBA.
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Sample User Code

#include <tagdb.h>

#include <iostream.h>

void usercode(d_Ref_Any&  inRef) {

//   PHYSICS GOES HERE.

//   This code is invoked for each event satisfying the client query.

//   This example does lambda counting ala David Zimmerman in Doug Olson’s

//   oParticles HIJING event data model.

      d_Ref<oParticles> current = inRef;

      int dumbpart = current->_ptcl.size();

      int num_Lambda = 0;

      for (int i = 0; i< dumbpart; i++) {

        if( current->_ptcl[i].p.jdahep[0] == 0  ){

          if(current->_ptcl[i].p.idhep == 3122) {

            num_Lambda++;

          }

        }

      }  //end for

      cout<<"\t"<<num_Lambda<<" out of "<<dumbpart;

      cout<<" particles are lambdas"<<endl;

};
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What if you don’t want to navigate the STAR event
data model directly?

Some possibilities:

● void usercode(d_Ref_Any& inRef){
        realUsercode(makeSTAF_Event(inRef));
     };

where makeSTAF_Event() is a library method to map a single
(Objectivity) persistent event into an appropriate STAF format

or
● wrap the iterator/driver code in STAF
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Query Builders and Drivers

● Rudimentary query driver (show?)
– accepts and runs range queries

● Less rudimentary query builder/driver
– accepts queries in either RangeQL (GCA) or ObjectivityQL
– provides some query building support, error protection

– allows users to decide whether to execute a query based on query
estimates

– enables message-level control
– sample output (show?)
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More Possibilities

No reason to require collocation of query building and physics
analysis

1.  Write usercode() as above
2.  Link with an even more elementary driver code

CC -o RunWithIt Usercode.o RunWithIt.o (...other libraries …)

3.  Run QueryBuilder
– looks like the driver code, but does NOT spawn an iterator
– good candidate for a GUI

– when you’re ready to run, note the query token string

4.  Pass the token to RunWithIt
RunWithIt <queryTokenString>
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More Possibilities (continued)

In less secure environments (poor man’s parallelism):

rsh rlnx01 RunWithIt <queryTokenString>

rsh rlnx02 RunWithIt <queryTokenString>
rsh rlnx03 RunWithIt <queryTokenString>

...

rsh rlnx99 RunWithIt <queryTokenString>

Iterators will be fed disjoint subsets of the qualifying events

Query progress can be monitored by QueryBuilder
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RunWithIt Listing

#include <gcaResources.h>

#include <tagdbResources.h>

void usercode(d_Ref_Any&  current);

int main (int argc, char **argv) {

  GCA_Resources gcaResources(argc, argv);

  TagdbResources tdbResources(argc, argv);

  ooInit();

  d_Transaction transaction;

  transaction.begin();

  tdbResources.openDBs(gcaResources.configuredValue("FdbBoot"));

     if (argc < 2) {

        cerr<<"You must provide a query token on the command line."<<endl;

        exit(1);

     }

     SMQ_QUERY_TOKEN_T token = argv[1];

      OrderOptIterator OOI(gcaResources.queryMonitor(), token,

                           gcaResources.messageLevel());

      while (OOI.not_done()) {

        usercode(*OOI);

        ++OOI;

      }

  transaction.commit();

  return 0;

};
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What comprises a query?

● A selection predicate OR a collection of event references
● native GCA query language (“RangeQL”) allows boolean

combinations of range selections on indexed attributes

(1800<num_Pion_p<2000) AND (2000>num_Pion_n)

● current TagdbResources implementation also supports
ObjectivityQL queries (selection predicateson tag data
members)

      _num_Pion_zero>0.585*(_num_Pion_p+_num_Pion_n)

● the latter uses collections-as-queries support:  builds an in-
memory collection from results returned by Objectivity
predicatescan
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Alternative Ways to Use the Architecture Today

1.  Supply a usercode() routine, link, and run
2.  Copy the driver code, and adapt it for personal use
3.  Instantiate and control GCA components directly (not a good

idea for production)
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Design Characteristics

● User shielded from many ugly details
● GCA and CORBA are encapsulated in a GCA_Resources class

– encapsulates ORB and BOA references

– encapsulates QueryFactory
– handles configuration details, config files, and initialization

– establishes remote connections

– provides some utilities (message levels, access to  GCA command line
parameters)

This piece should need to know little, if anything, about Objectivity.
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Design Characteristics II

● Tagdb and Objectivity details are encapsulated in a
TagdbResources class

– federation and tagdb handle management, opens and closes

– query builder utilities
– tag-content-specific stuff

– support for ObjectivityQL Tagdb scans

This piece should need to know little, if anything, about the GCA
architecture and CORBA.

● Currently the locus for Objectivity-to-CORBA utilities
● In a mixed environment, coordination will be needed for

session control.
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Saving query results

● What to save:
– OIDs of events that satisfy a selection predicate

– OIDs of events that survive a usercode() cut

– more than just OIDs?

● GCA has begun exploring rudimentary approaches to the first
two of these

– in Objectivity
– in external files

● support of third option would require more than GCA tools
● saving in Objectivity requires resolution of access control

issues

“Standard” GCA drivers open the federation in read-only mode.


